Método analítico dos #21 pontos do

Optometric Extension Program

S. Mogo

10 de Janeiro de 2008

O método analítico dos #21 pontos surgiu devido à tentativa de substituir métodos empíricos por regras precisas. O método foi concebido pelo Dr. A. Skeffington e a sua equipa do OEP — "Optometric Extension Program". Foi publicado pela primeira vez em 1935 e a última edição data de 1996. Os #21 pontos têm como base o método de análise visual segundo o critério de Sheard.

As bases deste sistema analítico podem ser resumidas como se segue:

- 1. a acomodação e a convergência são interdependentes;
- existe uma zona de margem entre as duas funções que permite certa flutuação de uma sem alterar a outra (convergência relativa / acomodação relativa);
- 3. pode haver falta de conforto por flutuações desiguais de uma função em relação à outra;
- comparando as flutuações de cada função com as suas normas, se uns resultados são baixos, outros são automáticamente altos;
- 5. algumas sequências de resultados podem-se agrupar em síndromes com aparências características.

1 Testes optométricos necessários

```
#1 Oftalmoscopia (±1.00 D)
#2 Queratometria (astigmatismo directo 0.25-1.00 D)
#2A Acuidade visual em visão ao longe (1.0 ou +)
#3 Foria habitual ao longe (0.5<sup>\(\Delta\)</sup>EXO)
#13A Foria habitual ao perto (6<sup>\(\Delta\)</sup>EXO)
#4 Retinoscopia estática (+0.50-0.75 D)
```

- $\# \mathbf{5}$ Retinoscopia ao perto 50 cm (+ convexo em 1.00-1.50 D que o# 4)
- #6 Retinoscopia a 1 m (+ convexo em 0.50-0.75 D que o #4)
- #7 Subjectivo monocular de longe (+0.50 D)
- #7A Subjectivo binocular de longe (+0.50 D)

Sandra Mogo #21 pontos OEP 2 procedimento base

```
#8 Foria induzida ao longe (0.5^{\triangle}EXO)
#9 Enublamento com base OUT ao longe (7-9^{\triangle})
#10 Convergência ao longe (19^{\triangle}/10^{\triangle})
#11 Divergência ao longe (9^{\triangle}/5^{\triangle})
#12 Foria e duccções verticais ao longe (ORTO, base UP 3^{\triangle}/1^{\triangle}, base DOWN 3^{\triangle}/1^{\triangle})
#13B Foria induzida ao perto (6^{\triangle}EXO)
#14A Cilindros cruzados monoculares (+ convexo em 1.00-1.50 D que o #7)
#15A Foria induzida ao perto pelo #14A (6^{\triangle}EXO)
#14B Cilindros cruzados binoculares (+ convexo em 1.00-1.50 D que o #7)
#15B Foria induzida ao perto pelo #14B (6^{\triangle}EXO)
#16A Convergência relativa positiva (15^{\triangle})
#16B Convergência ao perto (21^{\triangle}/15^{\triangle})
#17A Convergência relativa negativa (14^{\triangle})
#17B Divergência ao perto (22^{\triangle}/18^{\triangle})
#18 Foria e ducções verticais ao perto (ORTO, base UP 3^{\triangle}/1^{\triangle}, base DOWN 3^{\triangle}/1^{\triangle})
#19 Amplitude de acomodação (≥5 D)
#20 Acomodação relativa positiva (-2.50 D)
#21 Acomodação relativa negativa (+2.00 D)
```

2 Procedimento base

- Medir todas as forias com o método de von Graefe e partindo de base IN;
- o #7 deve ser o + convexo que permita a melhor AV;
- os testes devem ser realizados na ordem indicada (cuidado!);
- para medir as vergências, memorizar todos os valores → retirar diasporâmetros → anotar valores no final;
- o valor do #9 corresponde ao momento em que o indivíduo vê desfocado;
- os valores dos #16A e #17A correspondem ao momento em que o indivíduo já não consegue ler, estando os optótipos completamente desfocados;
- para o #19, chegar até à desfocagem consistente do optótipo de leitura a 33 cm;
- \bullet para os teste #20 e #21, ir até ao enublamento completo a 40 cm.

Sandra Mogo #21 pontos OEP 3 LAG E VALORES NETOS

3 Lag e valores netos

Qualquer esforço da convergência estimula a acomodação e vice-versa.

 $\downarrow \downarrow$

Quando se realiza uma medição dióptrica em visão ao perto, parte da acomodação proporcionada é devida à convergência.

 \downarrow

Um indivíduo exofórico (para compensar a sua foria) deverá fazer um esforço de convergência superior à demanda, o que arrastará um valor acomodativo maior.

 \Downarrow

- é proporcional à exoforia medida para cada teste de perto;
- representa a quantidade de acomodação que está ligada à convergência;
- \bullet em inglês lag = atraso.

O lag de acomodação é então um factor de correcção que se subtrai aos testes de acomodação em visão ao perto, parte-se de um valor bruto para achar um valor neto:

$$neto = bruto - lag.$$

- O lag só faz sentido em caso de exoforia;
- em casos de ortoforia ou endoforia neto = bruto;
- o lag vai limitar a quantidade de positivos a prescrever em visão ao perto quando exista exoforia,
 a fim de preservar a visão binocular;
- os testes cujos resultados são brutos e se devem calcular os netos são: #5, #6, #14A e #14B:

$$lag\#5 = \frac{\#15A}{8}; \qquad lag\#6 = 0.25; \qquad lag\#14A = \frac{\#15A}{6}; \qquad lag\#14B = \frac{\#15B}{9};$$

 $\bullet\,$ se #19 < 5 D \Rightarrow o valor do lag tem de ser modificado — lag modificado:

$$lag\ modificado = lag \times \frac{\#19}{5};$$

• no entanto, existem valores máximos para o lag dos diferentes testes:

$$lag#5 = 1.50 D$$
 $lag#14A = 2.50 D$ $lag#14B = 1.75 D$.

3.1 Cálculo dos valores do lag

O lag pode ser melhor entendido através da relação:

$$\begin{split} \frac{lag}{\text{acomodação requerida}} &= \frac{\text{exoforia}}{\text{convergência requerida}} \\ \Rightarrow & lag = \frac{\text{exoforia} \times \text{acomodação requerida}}{\text{convergência requerida}}. \end{split}$$

Para um indivíduo com DIP = 60 mm, à distância de 40 cm, o estímulo acomodativo é 2.50 D e o estímulo de convergência é 15^{\triangle} , logo:

$$lag = \frac{\text{exoforia} \times 2, 5}{15} \Rightarrow lag = \frac{\text{exo}}{6}.$$

• Cálculo do lag#14A:

$$lag = \frac{\text{exoforia} \times AR}{CR} \Rightarrow lag\#14A = \frac{\#15A \times 2, 5}{15} \Rightarrow lag\#14A = \frac{\#15A}{6};$$

• Cálculo do lag#14B:

⊳ o #14A é realizado em condições de foria (posição passiva);

 \triangleright o #14B é realizado binocularmente: factor de correcção $\frac{2}{3};$

(segundo alguns autores (Tait), apenas $\frac{2}{3}$ da convergência estão ligados à acomodação);

$$lag = \frac{\text{exoforia} \times AR}{CR} \times \frac{2}{3} \Rightarrow lag\#14B = \frac{\#15B \times 2, 5}{15} \times \frac{2}{3} \Rightarrow lag\#14B = \frac{\#15B}{9};$$

• Cálculo do lag#5:

> utiliza-se a foria #15A (40 cm) mas o #5 é feito a 50 cm, logo, o estímulo acomodativo é 2.00 D; > utiliza-se um factor correctivo $\frac{6 \times 2.00}{15} = \frac{4}{5}$ obtido para #15A=6[△];

$$lag = \frac{\text{exoforia} \times AR}{CR} \times \frac{4}{5} \Rightarrow lag\#5 = \frac{\#15A \times 2}{12} \times \frac{4}{5} \Rightarrow lag\#5 = \frac{\#15A}{8}.$$

4 Cadeia analítica fisiológica

Cadeia analítica fisiológica \rightarrow trata-se de uma forma gráfica que consiste em traçar uma linha — linha de zero — acima e abaixo da qual se representam os números dos testes consoante sejam superiores ou inferiores às suas normas.

#1 Oftalmoscopia #2 Queratometria

não se anotam na cadeia porque são dados estruturais e a cadeia é funcional

#3 Foria habitual ao longe

- compara-se com a sua norma: 0.5^{\triangle} EXO
- \bullet se for + exofórico que a norma \Rightarrow anotar acima da linha de zero: #3
- se for orto ou endofórico \Rightarrow anotar abaixo da linha de zero: $\overline{\#3}$
- \bullet se for igual à norma \Rightarrow não se considera

#13A Foria habitual ao perto

- compara-se com a sua norma: 6^{\triangle} EXO
- $\bullet\,$ se for +exofórico que a norma \Rightarrow anotar acima da linha de zero: #13A
- se for exofórico, orto ou endofórico \Rightarrow anotar abaixo da linha de zero: $\overline{\#13A}$
- se for igual à norma \Rightarrow não se considera

#4 Retinoscopia estática

- \bullet compara-se com o #7
- se for + positivo que o $\#7 \Rightarrow$ anotar acima da linha de zero: #4
- \bullet se for -positivo que o $\#7\Rightarrow$ anotar abaixo da linha de zero: $\overline{\#4}$
- $\bullet\,$ se for igual ao #7 \Rightarrow
não se considera

#5 Retinoscopia ao perto

- utiliza-se o (neto #5) e compara-se com o #4
- \bullet se o (neto #5) for + positivo que o #4 \Rightarrow anotar acima da linha de zero: #5
- se o (neto #5) for positivo que o #4 \Rightarrow anotar abaixo da linha de zero: $\overline{#5}$
- se o (neto #5) for = ao #4 \Rightarrow não se considera

#6 Retinoscopia a 1 m

- utiliza-se o (neto #6) e compara-se com o #4
- se o (neto #6) for + positivo que o #4 \Rightarrow anotar acima da linha de zero: #6
- se o (neto #6) for positivo que o #4 \Rightarrow anotar abaixo da linha de zero: $\overline{\#6}$
- se o (neto #6) for = ao #4 \Rightarrow não se considera

#7 Subjectivo monocular de longe

- hipermetrope \Rightarrow anotar acima da linha de zero seguido do sinal: #7⁺
- míope \Rightarrow anotar abaixo da linha de zero seguido do sinal: $\overline{\#7}$
- ullet emetrope \Rightarrow não se considera

#8 Foria induzida ao longe pelo #7

- compara-se com a sua norma: 0.5^{\triangle} EXO
- \bullet se for + exofórico que a norma \Rightarrow anotar acima da linha de zero: #8
- se for orto ou endofórico \Rightarrow anotar abaixo da linha de zero: $\overline{\#8}$
- $\bullet\,$ se for igual à norma \Rightarrow não se considera

#9 Enublamento com base OUT ao longe

- compara-se com a sua norma: $7-9^{\triangle}$
- $\bullet\,$ se for > que a norma \Rightarrow anotar acima da linha de zero: #9
- se for < que a norma \Rightarrow anotar abaixo da linha de zero: $\overline{\#9}$
- se for igual à norma \Rightarrow não se considera

#10 e #11 Convergência e divergência ao longe

- $\bullet\,$ comparam-se com as suas normas e entre sí
- 1° comparam-se as rupturas com as normas: #10: 19^{\triangle} e #11: 9^{\triangle}
- se a ruptura for < que a norma \Rightarrow o teste é automaticamente baixo \Rightarrow anotar $\overline{\#10}$ ou $\overline{\#11}$

- se a ruptura for \geq que a norma \Rightarrow tem que se analisar a recuperação:
 - compara-se a recuperação com metade do valor da ruptura;
 - se $\triangle < \frac{1}{2}\Box \Rightarrow$ o teste é baixo \Rightarrow anotar $\overline{\#10}$ ou $\overline{\#11}$
 - -se $\triangle \geq \frac{1}{2}\Box \Rightarrow$ o teste é alto \Rightarrow anotar #10 ou #11
- 2° comparam-se o #10 e o #11 entre sí:
 - se um for alto e o outro baixo \Rightarrow aquele que for baixo denomina-se teste baixo-baixo
 - se ambos forem altos \Rightarrow não existe teste baixo-baixo
 - se ambos forem baixos \Rightarrow analisam-se as recuperações:
 - * se um for baixo à custa da ruptura e outro à custa da recuperação ⇒ o teste baixobaixo é aquele que for baixo à custa da ruptura;
 - * se ambos são baixos à custa da ruptura \Rightarrow proporções: o teste q apresentar < valor $\frac{\Box}{\text{norma}}$ é o baixo-baixo;
 - * se ambos são baixos à custa da recuperação \Rightarrow proporções: o teste q apresentar < valor $\frac{\triangle}{\frac{1}{n}\Box}$ é o baixo-baixo

#12 Foria e duccções verticais ao longe

• não se considera

#13B Foria induzida ao perto

- compara-se com a sua norma: 6^{\triangle} EXO
- \bullet se for + exofórico que a norma \Rightarrow anotar acima da linha de zero: #13B
- se for exofórico, orto ou endofórico \Rightarrow anotar abaixo da linha de zero: $\overline{\#13B}$
- se for igual à norma \Rightarrow não se considera

#14A e #15A Cilindros cruzados monoculares e foria induzida ao perto pelo #14A

- utiliza-se o (neto #14A) e compara-se com o #7
- se o (neto #14A) for + positivo que o #7 \Rightarrow anotar #14A sobre #15A: $\frac{#14A}{#15A}$
- se o (neto #14A) for positivo que o #7 \Rightarrow anotar: $\frac{\#15A}{\#14A}$
- se o (neto #14A) for = ao #7 \Rightarrow anotar #14A-#15A
 - compara-se o #15A com a sua norma: 6^{\triangle} EXO
 - -se for +exofórico que a norma \Rightarrow anotar acima da linha de zero: #14A-#15A
 - se for exofórico, orto ou endofórico \Rightarrow anotar abaixo da linha de zero: $\overline{\#14A \#15A}$
 - se for igual à norma \Rightarrow não se consideram

#14B e #15B Cilindros cruzados binoculares e foria induzida ao perto pelo #14B

- utiliza-se o (neto #14B) e compara-se com o #7
- se o (neto #14B) for + positivo que o #7 \Rightarrow anotar #14B sobre #15B: $\frac{\#14B}{\#15B}$
- se o (neto #14B) for positivo que o #7 \Rightarrow anotar: $\frac{#15B}{#14B}$
- se o (neto #14B) for = ao #7 \Rightarrow anotar #14B-#15B

- compara-se o #15B com a sua norma: 6^{\triangle} EXO
- se for + exofórico que a norma ⇒ anotar acima da linha de zero: #14B-#15B
- se for exofórico, orto ou endofórico ⇒ anotar abaixo da linha de zero: $\overline{\#14B \#15B}$
- se for igual à norma \Rightarrow não se consideram

#16A e #17A Convergências relativas positiva e negativa

- comparam-se entre sí e com a norma do #16A
- se #16A > #17A \Rightarrow anotar: $\frac{\#16A}{\#17A}$
- se #16A < #17A \Rightarrow anotar: $\frac{\#17A}{\#16A}$
- se #16A = #17A \Rightarrow compara-se com a norma do #16A: 15^{\triangle}
 - -se for \geq que a norma \Rightarrow anotar acima da linha de zero: #16A-#17A
 - se for < que a norma \Rightarrow anotar abaixo da linha de zero: $\overline{\#16A \#17A}$

#16B e #17B Convergência e divergência ao perto

- comparam-se com as suas normas e entre sí
- $\bullet~1^{\circ}$ comparam-se as rupturas com as normas: #16B: 21^ e #17B: 22^
- se a ruptura for < que a norma \Rightarrow o teste é automaticamente baixo \Rightarrow anotar $\overline{\#16B}$ ou $\overline{\#17B}$
- se a ruptura for \geq que a norma \Rightarrow tem que se analisar a recuperação:
 - para o teste #16B compara-se a recuperação com 2/3 do valor da ruptura;
 - se \triangle < $\frac{2}{3}$ □ ⇒ o teste é baixo ⇒ anotar $\overline{\#16B}$
 - se $\triangle \ge \frac{2}{3}$ □ ⇒ o teste é alto ⇒ anotar #16B
 - para o teste #17B compara-se a recuperação com 3/4 do valor da ruptura;
 - $\text{ se } \triangle < \frac{3}{4}\square \Rightarrow \text{ o teste \'e baixo} \Rightarrow \text{anotar } \overline{\#17B}$
 - se $\triangle \ge \frac{3}{4}$ □ ⇒ o teste é alto ⇒ anotar #17B
- 2° comparam-se o #16B e o #17B entre sí:
 - se um for alto e o outro baixo \Rightarrow aquele que for baixo denomina-se teste baixo-baixo
 - se ambos forem altos ⇒ não existe teste baixo-baixo
 - se ambos forem baixos \Rightarrow analisam-se as recuperações:
 - * se um for baixo à custa da ruptura e outro à custa da recuperação \Rightarrow o teste baixobaixo é aquele que for baixo à custa da ruptura;
 - * se ambos são baixos à custa da ruptura \Rightarrow proporções: o teste q apresentar < valor $\frac{\Box}{\text{norma}}$ é o baixo-baixo;
 - * se ambos são baixos à custa da recuperaçãoção \Rightarrow proporções: o teste q apresentar < valor entre $\frac{\triangle}{\frac{2}{3}\Box}$ (#16B) e $\frac{\triangle}{\frac{3}{4}\Box}$ (#17B) é o baixo-baixo

#18 Foria e duccções verticais ao perto

• não se considera

#19 Amplitude de acomodação

• compara-se com a sua norma: 5 D

- $\bullet\,$ se for > que a norma \Rightarrow anotar acima da linha de zero: #19
- se for < que a norma \Rightarrow anotar abaixo da linha de zero: $\overline{\#19}$
- ullet se for igual à norma \Rightarrow não se considera

#20 e #21 Acomodações relativas positiva e negativa

- $\bullet\,$ comparam-se entre sí e com a norma do #21
- se $\#20 > \#21 \Rightarrow \text{anotar: } \frac{\#20}{\#21}$
- se #20 < #21 \Rightarrow anotar: $\frac{#21}{#20}$
- \bullet se #20 = #21 \Rightarrow compara-se com a norma do #21: +2.00 D
 - -se for > que a norma \Rightarrow anotar acima da linha de zero: #20-#21
 - se for < que a norma \Rightarrow anotar abaixo da linha de zero: $\overline{\#20 \#21}$
 - se for = à norma \Rightarrow não se consideram

5 Sequência informativa

A sequência informativa consiste em ordenar e extrair informação da cadeia analítica fisiológica. Permite estabelecer o diagnóstico tipo do problema apresentado pelo indivíduo.

A sequência informativa é composta por 6 fases:

- 1. teste base;
- 2. tipologias;
- 3. teste intermédio:
- 4. teste de perto;
- 5. padrão de equilíbrio;
- 6. amplitude de acomodação.

O teste base é o #7 que indica o tipo de ametropia em causa.

Da fase de *tipologias* fazem parte os testes #5, #9, o baixo-baixo das vergências de longe (#10 ou #11) e o baixo-baixo das vergências de perto (#16B ou #17B).

O teste intermédio é o #6 mas em grande parte dos casos este teste não se realiza.

A fase de teste de perto indica o equilíbrio do sistema em visão ao perto. Fazem parte desta fase os testes #14A e #15A:

- se $\frac{\#14A}{\#15A}$ \Rightarrow indivíduo aceita + positivos ao perto que ao longe;
- se #14A-#14B \Rightarrow indivíduo aceita a mesma quantidade de positivos ao longe e ao perto;

O padrão de equilíbrio é formado pelos testes #16A, #17A, #20 e #21. Esta fase da sequência informa sobre a relação acomodação - convergência. A experiência demonstrou que a compensação de um problema refractivo não pode inverter a disposição relativa destes testes no padrão.

A amplitude de acomodação é analisada através do teste #19 cuja posição em relação à linha de zero indica se o indivíduo possui ou não amplitude suficiente para trabalhar a 40 cm.

5.1 Casos tipo

Existem quatro tipologias fundamentais:

Tipologia A: também denominada tóxica ou patológica;

- surge em estados de febre, infecciosos, anémicos ou toxicidades;
- características: $\frac{\#3 \#8 \#13B}{\#10 \#11 \#16B \#17B}$;
- a degradação do sistema visual é tanto maior quanto mais baixos forem os testes e quantos mais testes forem baixos;
- solução: remeter para o profissional adequado.

Tipologia B₁: é um problema de acomodação;

- produz-se uma fadiga acomodativa com início em visão ao perto e que pode atingir a visão ao longe;
- características: $\overline{\#11 \#16B}$; (ou $\overline{\#10 \#16B}$)
- são indivíduos isotónicos: capacidade de convergir maior que a de divergir em visão ao longe $(\frac{\#10}{\#11})$ e o contrário em visão ao perto $(\frac{\#17B}{\#16B})$;
- esta tipologia corresponde a problemas visuais recentes;
- aceita bem positivos ao perto e ao longe;
- solução: prescrever o máximo de positivos ao perto e ao longe.

Tipologia B_2 : é um problema de acomodação;

- indica uma intensa fadiga acomodativa que se manifesta sobretudo em visão ao perto;
- características: $\frac{\#11 \#17B}{}$; (ou $\frac{\#10 \#17B}{}$)
- são indivíduos hipertónicos: grande capacidade de convergência a qualquer distância ($\frac{#10}{#11}$, $\frac{#16B}{#17B}$);
- esta tipologia considera-se posterior à B₁, o problema começou a sua extensão para o longe;
- aceita mal positivos ao perto e ao longe;
- solução: prescrever o máximo de positivos ao perto e reduzir positivos ao longe.

Tipologia C: é um problema de convergência;

- características: $\overline{#10 #16B}$;
- $\bullet\,$ relação #21 / #21 muito desequilibrada e #19 muito acima da média;

- são indivíduos hipotónicos: pequena capacidade de convergência a qualquer distância ($\frac{\#11}{\#10}$, $\frac{\#17B}{\#16B}$);
- \bullet esta tipologia considera-se posterior à B_2 e representa mais um passo na degradação visual;
- aceita mal positivos ao perto e ao longe;
- solução: reduzir positivos ao perto e ao longe, é um caso típico de TV (temos que tentar converte-lo em B₂).

Degradação das tipologias

As tipologias A e C apresentam uma sequência informativa tipo, não se deteriorando significativamente. No entanto, as tipologias B_1 e B_2 podem apresentar várias deteriorações dependendo do estado de evolução do problema visual.

 \mathbf{B}_{x1} : • é o caso mais simples e de aparecimento mais recente;

- stress visual ambiental sobre o perto \Rightarrow valores hipermetrópicos $\downarrow \Rightarrow \#14A \downarrow$ em relação ao #7, mas ainda se verifica $\frac{\#14A}{\#15A}$;
- $\bullet\,$ resolve-se com a simples prescrição de lentes;

• B ₁₁ :	$\#7^{+}$	#5	#14A	#16A-#21	#19
• D ₁₁ ;		#9- #11 - #16B	#15A	#17A-#20	
• B ₂₁ :	#7 ⁺	#5	#14A	#16A-#21	#19
• D ₂₁ :		#9- #11 - #17B	#15A	#17A-#20	

 \mathbf{B}_{x2} : • diminuição do #14A, apresentando valores netos iguais aos do #7 \Rightarrow #14A-#15A;

- debilita-se a acomodação e aumenta a exoforia;
- resolve-se com a simples prescrição de lentes;

• B ₁₂ : -	#7+	#5	#14A-#15A	#16A-#21	#19
		#9- #11 - #16B		#17A-#20	
• B ₂₂ :	#7+	#5	#14A-#15A	#16A-#21	#19
 D₂₂. 		#9- #11 - #17B		#17A-#20	

 \mathbf{B}_{x3} : • o #14A continua a diminuir tornando-se mais baixo que o #7 $\Rightarrow \frac{\#15\mathrm{A}}{\#14\mathrm{A}}$;

 é um problema mais sério que requer para a sua solução, não só a utilização de lentes mas também de um TV adequado;

• B ₁₃ :	$\#7^{+}$	#5	#15A	#16A-#21	#19
● D ₁₃ ;		#9- #11 - #16B	#14A	#17A-#20	
• B ₂₃ :	#7 ⁺	#5	#15A	#16A-#21	#19
• D ₂₃ :		#9- #11 - #17B	#14A	#17A-#20	

 \mathbf{B}_{x4} : • o #14A continua a diminuir e ocorre inversão dos testes de equilíbrio #20 e #21 $\Rightarrow \frac{#20}{#21}$;

 $\bullet\,$ a sua solução prevê, além de lentes, a realização de TV;

• B ₁₄ :	#7+	#5	#15A	#16A- #20	#19
■ D ₁₄ .		#9- #11 - #16B	#14A	#17A-# 21	

 \mathbf{B}_{x5} : • caracteriza-se por $\overline{\#19}$;

 $\bullet\,$ também aqui as lentes não são suficientes e são portanto auxiliadas por TV;

• B ₁₅ :	#7+	#5	#15A	#17A -#20	
• D ₁₅ ;		#9- #11 - #16B	#14A	#16A -#21	#19
• B ₂₅ :	#7 ⁺	#5	#15A	#17A -#20	
\bullet D ₂₅ .		#9- #11 - #17B			#19

 \mathbf{B}_{x6} : • neste caso a convergência já está afectada $\Rightarrow \frac{\#11}{\#10}$;

 a deterioração é tal que torna impossível a imediata aceitação de lentes, são indispensáveis exercícios de TV que levem o indivíduo a aceitar a sua compensação óptica;

 \mathbf{B}_{x7} : • representa um problema estremamente sério $\Rightarrow \overline{\#5}$

• requer TV antes de poder começar a usar lentes;

• B ₁₇ :	$\#7^{+}$		#15A	#17A-#20	
■ D ₁₇ .		#5 - #9- #10 - #16B	#14A	#16A-#21	#19
• B ₂₇ :	#7+		#15A	#17A-#20	
■ D ₂₇ .		#5 - #9- #10 - #17B	#14A	#16A-#21	#19

Deve-se iniciar o processo de identificação procurando por $\overline{\#5}$ (B_{x7}), uma vez que as deteriorações mais graves são as mais importantes.

Verifica-se então que a tipologia B_{17} (problema acomodativo) é extremamente parecida com a C (problema de convergência); como distingui-las?

Num caso de tipo C verifica-se que:

- #19 > 5 D;
- existe exoforia elevada;
- #19 monocular > #19 binocular;
- sistema visual apresenta grandes concessões: podem-se prever supressões importantes, fusão débil, baixa estereopsia;
- anamnese revela grandes distúrbios, experimentará vários óculos sem que nenhuns proporcionem conforto;
- #11 é sempre alto.

Cuidado com o #19: ter sempre atenção se este é baixo à custa da deterioração ou devido à presbiopia.

Sandra Mogo #21 pontos OEP 7 LEIS DA PRESCRIÇÃO

5.2 Padrão de equilíbrio

 $MSDA \rightarrow \text{máximo esférico dióptrico aceitável ao perto, } i.e., representa o máximo prescritível para essa distância.$

Uma prescrição de positivos em visão ao perto só pode ser tolerada de aceite com conforto se não alterar o padrão de equilíbrio habitual do indivíduo.

Para determinar o MSDA:

- começar por encontrar o padrão de equilíbrio com a prescrição habitual do indivíduo;
- repetir para a lente de controle (#7), com o #14A e com qualquer outra lente que seja adequada para a nova prescrição em visão próxima;
- o cálculo é determinado tendo em conta que:

```
-\, cada +0.25 D sobre a lente de controle:
```

```
* \#16A \downarrow 1^{\triangle};
```

- * $\#17A \uparrow 1^{\triangle}$;
- * #20 ↑ 0.25 D;
- * #21 ↓ 0.25 D;
- cada -0.25 D sobre a lente de controle:
 - * $\#16A \uparrow 1^{\triangle}$;
 - * $\#17A \downarrow 1^{\triangle}$;
 - * #20 ↓ 0.25 D;
 - * #21 ↑ 0.25 D;

6 Estrutura correctiva

 $\mathbf{B_1}$: Longe: #7A Perto: MSDA

Max: #7A-0.25

B₂: Longe: Min: #7A-0.75

Perto: MSDA

 \mathbf{C} :

Max: #7A-0.25 Longe:

Min: #7A-0.75

 $\begin{array}{c} \text{Max: MSDA} - 0.25 \\ \text{Perto:} \end{array}$

Min: MSDA-0.75

7 Leis da prescrição

Nunca prescrever + positivo do que a quantidade de acomodação livre associada à convergência,
 i.e., nunca maior que o #7A para longe e o neto#14B para perto;

- nunca prescrever positivos que alterem muito a função associada, *i.e.*, que aumentem significativamente os testes #8 e #13B em relação aos testes #3 e #13A;
- se a convergência é alta ao longe e baixa ao perto ⇒ B₁ ⇒ compensar positivo total a todas as distâncias;
- se a convergência é alta ao longe e ao perto ⇒ B₂ ⇒ hipocompensar positivos ao longe e compensar totalmente ao perto;
- se a convergência é baixa ao longe e ao perto \Rightarrow C \Rightarrow hipocompensar a todas as distâncias;
- se as vergências ao longe e ao perto (#9, #10, #11, #16A, #16B, #17A, #17B) são baixas ⇒ hipocompensar positivos a todas as distâncias;
- nunca prescrever lentes para o perto que alterem o padrão de conduta visual habitual do indivíduo;
- a prescrição para o perto uma lente + positiva que o MSDA pode ser levada em conta considerando os seguintes factores:
 - idade do indivíduo;
 - grau de desorganização do caso (estruturado ou não);
 - se vai efectuar um programa de treino visual;
 - positivo máximo aceitável ao longe.

8 Estruturação do caso

 $Sistema\ visual\ estruturado \rightarrow$ é aquele que se adaptou ao seu entorno, mostrando-se estático e sem sintomas subjectivos.

Problema

autodefesa do organismo

 \downarrow

estruturação do caso

11

adaptação do organismo

 \Downarrow

anomalia a nível estrutural.

- Um caso estruturado apresenta geralmente poucos problemas subjectivos nos limites das suas principais actividades, no entanto, será pouco eficaz fora destes limites;
- os sistemas visuais estruturados aceitam mal as lentes positivas.

Características de um sistema visual estruturado:

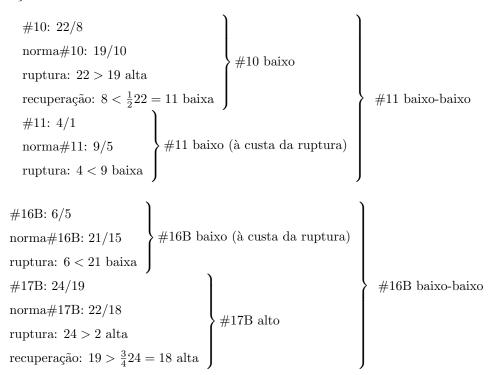
Sandra Mogo #21 pontos OEP 9 EXEMPLO

- 1. O #4 é igual ou + convexo que o #7;
- 2. o #9 é maior ou igual à norma;
- 3. a ruptura do #10 é baixa e a recuperação é maior ou igual à norma;
- 4. a ruptura e a recuperação do #11 são altas;
- 5. o neto#14B é maior ou igual que o neto#14A;
- 6. a ruptura do #16B é baixa e a recuperação é maior ou igual à norma;
- 7. entre o #19 e o #20, um é alto e o outro é baixo;
- 8. o quociente $AC/A \neq alto (AC/A \geq 1)$;
- 9. não existem queixas subjectivas.

Para que o sistema visual seja considerado estruturado devem cumprir-se pelo menos 5 das 7 primeiras características.

9 Exemplo

#3	1 exo	#14B	+1.25
#13A	8 exo	#15B	10 exo
#4	+1.00	Controle	#7
#5	+2.00	#16A	-
#7	+0.75	#16B	6/5
#8	2 exo	#17A	20
#9	9	#17B	24/19
#10	22/8	#19	5.00
#11	4/1	#20	-5.00
#13B	9 exo	#21	+3.25
#14A	+1.25	RxHab	0.00
#15A	10 exo	Idade	18 anos


- #19=5 D, logo, não é necessário factor de correcção na determinação do lag.
- #5 \longrightarrow |#5 #14A| = | + 2.00 1.25| = 0.75 < 1 \Rightarrow existe boa correlação entre os testes #5 e #14A, logo, pode ser usada a foria #15A no cálculo do lag#5.

$$lag\#5 = \frac{\#15A}{8} = \frac{10}{8} = 1,25 D$$

 $neto\#5 = bruto\#5 - lag\#5 = +2,00 - 1,25 = +0.75 D$

- #14A $\longrightarrow lag\#14$ A = $\frac{\#15}{6}$ = $\frac{10}{6}$ =1,6(6) D neto#14A = bruto#14A - lag#14A = +1,25 - 1,6(6) = -0.50 D
- #14B $\longrightarrow lag#14$ B = $\frac{#15B}{9} = \frac{10}{9} = 1,1(1)$ D neto#14B = bruto#14B - lag#14B = +1,25-1,1(1) = +0.25 D

Sandra Mogo #21 pontos OEP 9 EXEMPLO

• Determinação dos testes baixo-baixo:

• Cadeia analítica fisiológica:

#3-#13A-#4	#7-#8	#13B-	#15A-#15B-#17A	#17B-	#20
#5	#10-#11		#14A-#14B-#16A- #16B		#21

• Determinação do MSDA:

	Controle	Habitual	neto#14B	
	#7=+0.75	0.00	+0.25	
#16A	6	9	8	
#17A	20	17	18	
#20	-5.00	-4.25	-4.50	
#21	+3.25	+4.00	+3.75	
P.E.	#17A-#20 #16A-#21	$\frac{\#17A - \#20}{\#16A - \#21}$	$\frac{\#17A - \#20}{\#16A - \#21}$	
	aceite		aceite	

 \overline{A} lente de controle #7=0.75 D é aceite, mas é superior ao neto#14B = +0.25 D, logo, MSDA = +0.25 D.

• Sequência informativa:

#7+ #15A #17A-#20 #5- #11 - #16B #14A #16A-#21
$$\frac{\#11 - \#16B}{\#5} \Rightarrow \text{tipologia B}_1 \} B_{17}$$

• Estruturação do caso:

$$- \#4 \ge \#7 \longrightarrow +$$

Sandra Mogo #21 pontos OEP 10 BIBLIOGRAFIA

$$-\#9 \ge 7 \leftrightarrow 9 \longrightarrow +$$

$$-\left\{\begin{array}{c} \#10(\square) < 19 \\ \#10(\triangle) \ge 10 \end{array}\right\} \longrightarrow -$$

$$-\left\{\begin{array}{c} \#11(\square) \ge 9 \\ \#11(\triangle) \ge 5 \end{array}\right\} \longrightarrow -$$

$$-neto\#14B \ge neto\#14A \longrightarrow +$$

$$-\left\{\begin{array}{c} \#16B(\square) < 21 \\ \#16B(\triangle) \ge 15 \end{array}\right\} \longrightarrow -$$

$$-\#19 e \#20, um \acute{e} alto e outro \acute{e} baixo \longrightarrow -$$

Proporção: $3/4 \Rightarrow$ Inconclusivo (não podemos classificar o caso nem como estruturado nem como não estruturado)

- Estrutura correctiva: B₁ \Rightarrow { Longe: #7 = +0.75 Perto: MSDA = +0.25
- Conclusão / prescrição final: a ser discutida na aula TP.

10 Bibliografia

- 1. Skeffington, A., Introduction to clinical optometry, OEP, USA, 1988.
- 2. Skeffington, A., Practical applied optometry, OEP, USA, 1991.
- 3. Schmitt, E., A field manual for clinical optometry: guidelines for clinical testing, lens prescribing and vision care, OEP, USA, 1996.